Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLANT PHYSIOLOGYarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLANT PHYSIOLOGY
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Proteome-Wide Analysis of Cysteine Reactivity during Effector-Triggered Immunity

Authors: Evan W. McConnell; Philip Berg; Timothy J. Westlake; Katherine M. Wilson; George V. Popescu; Leslie M. Hicks; Sorina C. Popescu;

Proteome-Wide Analysis of Cysteine Reactivity during Effector-Triggered Immunity

Abstract

A surge in the accumulation of oxidants generates shifts in the cellular redox potential during early stages of plant infection with pathogens and activation of effector-triggered immunity (ETI). The redoxome, defined as the proteome-wide oxidative modifications of proteins caused by oxidants, has a well-known impact on stress responses in metazoans. However, the identity of proteins and the residues sensitive to oxidation during the plant immune response remain largely unknown. Previous studies of the thimet oligopeptidases TOP1 and TOP2 placed them in the salicylic acid dependent branch of ETI, with a current model wherein TOPs sustain interconnected organellar and cytosolic pathways that modulate the oxidative burst and development of cell death. Herein, we characterized the ETI redoxomes in Arabidopsis (Arabidopsis thaliana) wild-type Col-0 and top1top2 mutant plants using a differential alkylation-based enrichment technique coupled with label-free mass spectrometry-based quantification. We identified cysteines sensitive to oxidation in a wide range of protein families at multiple time points after pathogen infection. Differences were detected between Col-0 and top1top2 redoxomes regarding the identity and number of oxidized cysteines, and the amplitude of time-dependent fluctuations in protein oxidation. Our results support a determining role for TOPs in maintaining the proper level and dynamics of proteome oxidation during ETI. This study significantly expands the repertoire of oxidation-sensitive plant proteins and can guide future mechanistic studies.

Keywords

Proteome, Arabidopsis, Metalloendopeptidases, Plant Immunity, Cysteine, Oxidation-Reduction, Plant Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Average
Top 10%
bronze