Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Usiena air - Univers...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Information Theory
Article . 2010 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Asymptotically Optimum Universal Watermark Embedding and Detection in the High-SNR Regime

Authors: COMESANA P.; MERHAV N.; BARNI M.;

Asymptotically Optimum Universal Watermark Embedding and Detection in the High-SNR Regime

Abstract

The problem of optimum watermark embedding and detection was addressed in a recent paper by Merhav and Sabbag, where the optimality criterion was the maximum false-negative error exponent subject to a guaranteed false-positive error exponent. In particular, Merhav and Sabbag derived universal asymptotically optimum embedding and detection rules under the assumption that the detector relies solely on second-order joint empirical statistics of the received signal and the watermark. In the case of a Gaussian host signal and a Gaussian attack, however, closed-form expressions for the optimum embedding strategy and the false-negative error exponent were not obtained in that work. In this paper, we derive the false-negative error exponent for any given embedding strategy and use such a result to show that in general the optimum embedding rule depends on the variance of the host sequence and the variance of the attack noise. We then focus on high signal-to-noise ratio (SNR) regime, deriving the optimum embedding strategy for such a setup. In this case, a universally optimum embedding rule turns out to exist and to be very simple with an intuitively appealing geometrical interpretation. The effectiveness of the newly proposed embedding strategy is evaluated numerically.

Country
Italy
Keywords

Hypothesis testing; Neyman-Pearson; Watermark detection; Watermark embedding; Watermarking

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?