
handle: 10356/81418 , 10220/43459
Type-2 fuzzy logic systems have extensively been applied to various engineering problems, e.g. identification, prediction, control, pattern recognition, etc. in the past two decades, and the results were promising especially in the presence of significant uncertainties in the system. In the design of type-2 fuzzy logic systems, the early applications were realized in a way that both the antecedent and consequent parameters were chosen by the designer with perhaps some inputs from some experts. Since 2000s, a huge number of papers have been published which are based on the adaptation of the parameters of type-2 fuzzy logic systems using the training data either online or offline. Consequently, the major challenge was to design these systems in an optimal way in terms of their optimal structure and their corresponding optimal parameter update rules. In this review, the state of the art of the three major classes of optimization methods are investigated: derivative-based (computational approaches), derivative-free (heuristic methods) and hybrid methods which are the fusion of both the derivative-free and derivative-based methods. Accepted version
Interval type-2 fuzzy logic systems, Optimal learning algorithm, 330, 004
Interval type-2 fuzzy logic systems, Optimal learning algorithm, 330, 004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 42 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
