Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://figshare.com...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://figshare.com/ndownload...
Article
License: CC BY
Data sources: UnpayWall
https://doi.org/10.1109/sfcs.2...
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

How to Pay, Come What May: Approximation Algorithms for Demand-Robust Covering Problems

Authors: Kedar Dhamdhere; Vineet Goyal; R. Ravi; Mohit Singh;

How to Pay, Come What May: Approximation Algorithms for Demand-Robust Covering Problems

Abstract

Robust optimization has traditionally focused on uncertainty in data and costs in optimization problems to formulate models whose solutions will be optimal in the worst-case among the various uncertain scenarios in the model. While these approaches may be thought of defining data- or cost-robust problems, we formulate a new "demand-robust" model motivated by recent work on two-stage stochastic optimization problems. We propose this in the framework of general covering problems and prove a general structural lemma about special types of first-stage solutions for such problems: there exists a first-stage solution that is a minimal feasible solution for the union of the demands for some subset of the scenarios and its objective function value is no more than twice the optimal. We then provide approximation algorithms for a variety of standard discrete covering problems in this setting, including minimum cut, minimum multi-cut, shortest paths, Steiner trees, vertex cover and un-capacitated facility location. While many of our results draw from rounding approaches recently developed for stochastic programming problems, we also show new applications of old metric rounding techniques for cut problems in this demand-robust setting.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%