Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Siphon-Based Deadlock Prevention Policy for Flexible Manufacturing Systems

Authors: Huang, Yi-Sheng; Jeng, Muder; Xie, Xiaolan; Chung, Da-Hsiang;

Siphon-Based Deadlock Prevention Policy for Flexible Manufacturing Systems

Abstract

A siphon-based algorithm for deadlock prevention of a type of Petri nets called S3PMR, which is a subclass of S3PGR2, is presented in this correspondence. The proposed method is an iterative approach by adding two kinds of control places called ordinary control (OC) places and weighted control (WC) places to the original model to prevent siphons from being unmarked. An OC place with ordinary arcs, which optimally prevent a siphon from becoming unmarked, is employed whenever it is possible, and otherwise, the WC places that adopt a conservative policy of controlling the release of parts into the system are used. Furthermore, this algorithm is not only for the subclass Petri nets but also for S3PR, ES 3PR, S2LSPR, and S3PGR2 nets. The authors prove the liveness and reversibility of the controlled net, and hence establish the correctness of the deadlock prevention policy. Finally, numerical experiments indicate that the proposed policy appears to be more permissive than closely related approaches in the literature

Country
France
Keywords

siphon, Deadlock, manufacturing systems, Petri nets, [SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering, [SDV.IB]Life Sciences [q-bio]/Bioengineering, 004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    183
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
183
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!