Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The FASEB Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The FASEB Journal
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The FASEB Journal
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Genes & Development
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transcriptional Regulation of Xenobiotic Detoxification in Drosophila

Authors: Jyoti R, Misra; Michael A, Horner; Geanette, Lam; Carl S, Thummel;

Transcriptional Regulation of Xenobiotic Detoxification in Drosophila

Abstract

Xenobiotic compounds pose a constant threat to the survival of all organisms and to overcome this, animals mount an elaborate transcriptional response, regulating a battery of enzymes that detoxify these compounds. Several transcription factors have been identified in vertebrates that regulate this response. In contrast, little is known about this pathway in insects. We show that the Drosophila Nrf2 ortholog, CncC, is a central regulator of xenobiotic detoxification responses. A binding site for CncC and its heterodimer partner Maf is sufficient and necessary for robust transcriptional responses to three xenobiotic compounds, phenobarbital (PB), chlorpromazine, and caffeine. Genetic manipulations that alter the levels of CncC, or its negative regulator Keap1, lead to predictable changes in xenobiotic‐inducible gene expression. Transcriptional profiling studies reveal that more than half of the genes regulated by PB are also controlled by CncC. Consistent with these effects on detoxification gene expression, activation of the CncC/Keap1 pathway in Drosophila is sufficient to confer resistance to the pesticide malathion. Further, in the two pesticide‐resistant strains of Drosophila , the pathway is constitutively active, leading to overexpression of several detoxification genes. Our current efforts are aimed at identifying the mutations that constitutively activate the pathway in these strains.

Related Organizations
Keywords

Insecticides, Binding Sites, Kelch-Like ECH-Associated Protein 1, NF-E2-Related Factor 2, Gene Expression Profiling, Drug Resistance, Intracellular Signaling Peptides and Proteins, Xenobiotics, Drosophila melanogaster, Cytochrome P-450 Enzyme System, Gene Expression Regulation, Inactivation, Metabolic, Malathion, Animals, Cytochrome P450 Family 6, Drosophila Proteins, Promoter Regions, Genetic, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    252
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
252
Top 1%
Top 10%
Top 1%
Published in a Diamond OA journal