Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Materials...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Materials Research and Technology
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Materials Research and Technology
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The sintering densification, microstructure and mechanical properties of Ti–48Al–2Cr–2Nb by a small addition of Sn–Al powder

Authors: Ce Zhang; Yu Pan; Tailong Hui; Wei Xu; Shuaihua Zhang; Muhammad Arif Mughal; Jiazhen Zhang; +1 Authors

The sintering densification, microstructure and mechanical properties of Ti–48Al–2Cr–2Nb by a small addition of Sn–Al powder

Abstract

TiAl alloys are difficult to obtain high density through traditional pressing and sintering process. Sn is a promising liquid-phase sintering addition for TiAl alloys; however, the further studies have elaborated that the liquid phase sintering of Sn is limited due to poor wettability between TiAl and melt Sn. Based on it, this study adopts Sn–Al powder addition instead of pure Sn powder. The results describe that a small amount of active Al enhanced the wettability of the Sn droplets to the TiAl matrix, thereby further promoting the liquid phase sintering effect of the addition of Sn. The sample sintered at 1320–1350 °C has a density excess of 95%, near γ or duplex microstructure with small proportion of lamellar colonies. Through subsequent non-encapsulation HIP, the fine-grained structure is maintained at the same time to reach full density, which enables the as-sintered samples to obtain moderate tensile properties at room temperatures (UST = 520 ± 5 MPa, YS = 401 ± 7 MPa, EL = 1.33 ± 0.1).

Related Organizations
Keywords

Mining engineering. Metallurgy, Liquid sintering, Wettability, TN1-997, Mechanical properties, Titanium aluminide, Microstructure

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Average
gold