Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.biorxiv....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Replay as structural inference in the hippocampal-entorhinal system

Authors: Talfan Evans; Neil Burgess;

Replay as structural inference in the hippocampal-entorhinal system

Abstract

AbstractModel-based decision making relies on the construction of an accurate representation of the underlying state-space, and localization of one’s current state within it. One way to localize is to recognize the state with which incoming sensory observations have been previously associated. Another is to update a previous state estimate given a known transition. In practice, both strategies are subject to uncertainty and must be balanced with respect to their relative confidences; robust learning requires aligning the predictions of both models over historic observations. Here, we propose a dual-systems account of the hippocampal-entorhinal system, where sensory prediction errors between these models duringonlineexploration of state space initiateofflineprobabilistic inference.Offlineinference computes ametricembedding on grid cells of anassociativeplace graph encoded in the recurrent connections between place cells, achieved by message passing between cells representing non-local states. We provide testable explanations for coordinated place and grid cell ‘replay’ as efficient message passing, and for distortions, partial rescaling and direction-dependent offsets in grid patterns as the confidence weighted balancing of model priors, and distortions to grid patterns as reflecting inhomogeneous sensory inputs across states.Author SummaryMinimising prediction errors between transition and sensory input (observation) models predicts partial rescaling and direction-dependent offsets in grid cell firing patterns.Inhomogeneous sensory inputs predict distortions of grid firing patterns duringonlinelocalisation, and local changes of grid scale duringofflineinference.Principled information propagation duringofflineinference predicts coordinated place and grid cell ‘replay’, where sequences propagate between structurally related features.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average