
Abstract Dominant mutations in the Ret receptor tyrosine kinase lead to the familial cancer syndrome multiple endocrine neoplasia type 2 (MEN2). Mammalian tissue culture studies suggest that RetMEN2 mutations significantly alter Ret-signaling properties, but the precise mechanisms by which RetMEN2 promotes tumorigenesis remain poorly understood. To determine the signal transduction pathways required for RetMEN2 activity, we analyzed analogous mutations in the Drosophila Ret ortholog dRet. Overexpressed dRetMEN2 isoforms targeted to the developing retina led to aberrant cell proliferation, inappropriate cell fate specification, and excessive Ras pathway activation. Genetic analysis indicated that dRetMEN2 acts through the Ras-ERK, Src, and Jun kinase pathways. A genetic screen for mutations that dominantly suppress or enhance dRetMEN2 phenotypes identified new genes that are required for the phenotypic outcomes of dRetMEN2 activity. Finally, we identified human orthologs for many of these genes and examined their status in human tumors. Two of these loci showed loss of heterozygosity (LOH) within both sporadic and MEN2-associated pheochromocytomas, suggesting that they may contribute to Ret-dependent oncogenesis.
Molecular Sequence Data, Proto-Oncogene Proteins c-ret, Proto-Oncogene Proteins pp60(c-src), JNK Mitogen-Activated Protein Kinases, Multiple Endocrine Neoplasia Type 2a, Retina, Disease Models, Animal, ras Proteins, Animals, Humans, Protein Isoforms, Drosophila, Amino Acid Sequence
Molecular Sequence Data, Proto-Oncogene Proteins c-ret, Proto-Oncogene Proteins pp60(c-src), JNK Mitogen-Activated Protein Kinases, Multiple Endocrine Neoplasia Type 2a, Retina, Disease Models, Animal, ras Proteins, Animals, Humans, Protein Isoforms, Drosophila, Amino Acid Sequence
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 79 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
