Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemistry - A Europe...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemistry - A European Journal
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spontaneous Growth of 3D Silver Mesoflowers on Poly(4‐vinylpyridine) Brushes‐Grafted‐Graphene Oxide Films and Facile Creation of Nanoporosities over their Surface

Authors: Lihua Feng; Wenqin Wang; Xiyong Li; Tao Chen;

Spontaneous Growth of 3D Silver Mesoflowers on Poly(4‐vinylpyridine) Brushes‐Grafted‐Graphene Oxide Films and Facile Creation of Nanoporosities over their Surface

Abstract

AbstractFabricating three‐dimensional (3D) hierarchical noble‐metal particles by spontaneous redox reactions between graphene and noble‐metal salts still remains a great challenge. Herein, the fact that graphene oxide (GO) itself acts as both a platform for grafting polymer brushes and a reducing agent to reduce [Ag(NH3)2]+ ions is taken advantages of. 3D flower‐like Ag mesoparticles (Ag mesoflowers, Ag MFs) with tunable size and shapes can spontaneous grow on poly(4‐vinylpyridine) brushes‐grafted‐graphene oxide (P4VP‐g‐GO) films in Ag(NH3)2OH solution without the use of any additional reducing agent. The residual Ag(NH3)2OH on 3D Ag MFs surface can be further reduced by NaBH4, causing abundant nanoporosities over the entire Ag MFs. The resulting Ag nanoporous MFs (Ag NMFs) with larger surface‐to‐volume ratio and higher nanoscale roughness exhibit ultrasensitivity in surface‐enhanced Raman spectroscopy (SERS) detection, and the detection limit for 4‐aminothiophenol is as low as 10−13 m.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!