
Abstract Chitosan (CS) is considered a suitable biomaterial for enzyme immobilization. CS combination with polyethylene glycol (PEG) can improve the biocompatibility and the properties of the immobilized system. Thus, the present work investigated the effect of the PEG in the horseradish peroxidase (HRP) immobilization into chitosan nanoparticles from the morphological, physicochemical, and biochemical perspectives. CS and CS/PEG nanoparticles were obtained by ionotropic gelation and provided immobilization efficiencies (IE) of 65.8 % and 51.7 % and activity recovery (AR) of 76.4 % and 60.4 %, respectively. The particles were characterized by DLS, ZP, SEM, FTIR, TGA and DSC analysis. Chitosan nanoparticles showed size around 135 nm and increased to 229 nm after PEG addition and HRP immobilization. All particles showed positive surface charges (20−28 mV). Characterizations suggest nanoparticles formation and effective immobilization process. Similar values for optimum temperature and pH for immobilized HRP into both nanoparticles were found (45 °C, 7.0). Vmax value decreased by 5.07 to 3.82 and 4.11 mM/min and KM increased by 17.78 to 18.28 and 19.92 mM for free and immobilized HRP into chitosan and chitosan/PEG nanoparticles, respectively. Another biochemical parameters (Kcat, Ke, and Kα) evaluated showed a slight reduction for the immobilized enzyme in both nanoparticles compared to the free enzyme.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 60 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
