Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Process Biochemistryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Process Biochemistry
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Immobilization and characterization of horseradish peroxidase into chitosan and chitosan/PEG nanoparticles: A comparative study

Authors: Micael Nunes Melo; Fernanda Menezes Pereira; Matheus Alves Rocha; Jesica Gonçalves Ribeiro; Fernando Mendonça Diz; Wesley Formentin Monteiro; Rosane Angélica Ligabue; +2 Authors

Immobilization and characterization of horseradish peroxidase into chitosan and chitosan/PEG nanoparticles: A comparative study

Abstract

Abstract Chitosan (CS) is considered a suitable biomaterial for enzyme immobilization. CS combination with polyethylene glycol (PEG) can improve the biocompatibility and the properties of the immobilized system. Thus, the present work investigated the effect of the PEG in the horseradish peroxidase (HRP) immobilization into chitosan nanoparticles from the morphological, physicochemical, and biochemical perspectives. CS and CS/PEG nanoparticles were obtained by ionotropic gelation and provided immobilization efficiencies (IE) of 65.8 % and 51.7 % and activity recovery (AR) of 76.4 % and 60.4 %, respectively. The particles were characterized by DLS, ZP, SEM, FTIR, TGA and DSC analysis. Chitosan nanoparticles showed size around 135 nm and increased to 229 nm after PEG addition and HRP immobilization. All particles showed positive surface charges (20−28 mV). Characterizations suggest nanoparticles formation and effective immobilization process. Similar values for optimum temperature and pH for immobilized HRP into both nanoparticles were found (45 °C, 7.0). Vmax value decreased by 5.07 to 3.82 and 4.11 mM/min and KM increased by 17.78 to 18.28 and 19.92 mM for free and immobilized HRP into chitosan and chitosan/PEG nanoparticles, respectively. Another biochemical parameters (Kcat, Ke, and Kα) evaluated showed a slight reduction for the immobilized enzyme in both nanoparticles compared to the free enzyme.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!