Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High Level Synthesis of Recombinant Soluble Urokinase Receptor (CD87) by Ovarian Cancer Cells Reduces Intraperitoneal Tumor Growth and Spread in Nude Mice

Authors: V, Lutz; U, Reuning; A, Krüger; T, Luther; S P, von Steinburg; H, Graeff; M, Schmitt; +2 Authors

High Level Synthesis of Recombinant Soluble Urokinase Receptor (CD87) by Ovarian Cancer Cells Reduces Intraperitoneal Tumor Growth and Spread in Nude Mice

Abstract

Focussing of the serine protease urokinase (uPA) to the tumor cell surface via interaction with its receptor (uPAR) is an important step in tumor invasion and metastasis. The human ovarian cancer cell line OV-MZ-6#8 was stably transfected with expression plasmids either encoding cell-associated uPAR (GPI-uPAR) or a soluble form of uPAR (suPAR) lacking its glycan lipid anchor. In vitro, high level synthesis of functionally active recombinant suPAR inhibited cell proliferation and led to reduced cell-associated fibrin matrix degradation, whereas fibrinolytic activity was increased in OV-MZ-6#8 cells overexpressing GPI-uPAR. Both OV-MZ-6#8-derived clones were inoculated into the peritoneum of nude mice and tested for tumor growth and spread. High level synthesis of recombinant suPAR (without altering the physiological expression levels of GPI-uPAR and uPA in these cells) resulted in a significant reduction of tumor burden (up to 86%) in the xenogeneic mouse model. In contrast, overexpression of GPI-uPAR in tumor cells did not affect tumor growth. Our results demonstrate that high levels of suPAR in the ovarian cancer cell vicinity can act as a potent scavenger for uPA, thereby significantly reducing tumor cell growth and cancer progression in vivo.

Keywords

Ovarian Neoplasms, Fibrinolysis, Transplantation, Heterologous, Mice, Nude, Plasminogen, Receptors, Cell Surface, Transfection, Recombinant Proteins, Receptors, Urokinase Plasminogen Activator, Mice, Phenotype, Solubility, Tumor Cells, Cultured, Animals, Humans, Female, Neoplasm Invasiveness, Cell Division, Peritoneal Neoplasms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Average
Top 10%
Top 10%
Related to Research communities
Cancer Research
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!