
doi: 10.3414/me13-01-0027
pmid: 24136011
SummaryObjectives: Due to the narrow therapeutic range and high drug-to-drug interactions (DDIs), improving the adequate use of warfarin for the elderly is crucial in clinical practice. This study examines whether the effectiveness of using warfarin among elderly inpatients can be improved when machine learning techniques and data from the laboratory information system are incorporated.Methods: Having employed 288 validated clinical cases in the DDI group and 89 cases in the non-DDI group, we evaluate the prediction performance of seven classification techniques, with and without an Adaptive Boosting (AdaBoost) algorithm. Measures including accuracy, sensitivity, specificity and area under the curve are used to evaluate model performance.Results: Decision tree-based classifiers outperform other investigated classifiers in all evaluation measures. The classifiers supplemented with AdaBoost can generally improve the performance. In addition, weight, congestive heart failure, and gender are among the top three critical variables affecting prediction accuracy for the non-DDI group, while age, ALT, and warfarin doses are the most influential factors for the DDI group.Conclusion: Medical decision support systems incorporating decision tree-based approaches improve predicting performance and thus may serve as a supplementary tool in clinical practice. Information from laboratory tests and inpatients’ history should not be ignored because related variables are shown to be decisive in our prediction models, especially when the DDIs exist.
Aged, 80 and over, Cross-Cultural Comparison, Heart Failure, Male, Dose-Response Relationship, Drug, Body Weight, Decision Trees, Anticoagulants, Comorbidity, Middle Aged, Quality Improvement, Artificial Intelligence, Ethnicity, Humans, Drug Interactions, Female, Clinical Laboratory Information Systems, Medical History Taking, Algorithms, Aged
Aged, 80 and over, Cross-Cultural Comparison, Heart Failure, Male, Dose-Response Relationship, Drug, Body Weight, Decision Trees, Anticoagulants, Comorbidity, Middle Aged, Quality Improvement, Artificial Intelligence, Ethnicity, Humans, Drug Interactions, Female, Clinical Laboratory Information Systems, Medical History Taking, Algorithms, Aged
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
