Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Genearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Gene
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2007
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Gene
Article . 2007
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex

Authors: Florio Carolina; Moscariello Mario; Ederle Sara; Fasano Rossella; Lanzuolo Chiara; Pulitzer John F;

A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex

Abstract

HTL1, a small gene of Saccharomyces cerevisiae, encodes a 78-aminoacid peptide that influences the performance of a wide range of cellular processes [Lanzuolo, C., Ederle, S., Pollice, A., Russo, F., Storlazzi, A., Pulitzer, J.F., 2001. The HTL1 gene,YCR020W-b of Saccharomyces cerevisiae is necessary for growth at 37 degrees C, and for the conservation of chromosome stability and fertility. Yeast, 18, 1317-1330]. Genetic interactions and co-immunoprecipitation experiments indicate a role for Htl1p in functions controlled by RSC, a multiprotein, ATP-dependent, chromatin-remodeling complex [Lu, Y.M., Lin, Y.R., Tsai, A., Hsao, Y.S., Li, C.C., Cheng, M.Y., 2003. Dissecting the pet18 mutation in Saccharomyces cerevisiae: HTL1 encodes a 7-kDa polypeptide that interacts with components of the RSC complex. Mol. Genet. Genomics., 269, 321-330] [Romeo, M.J., Angus-Hill, M.L., Sobering, A.K., Kamada, Y., Cairns, B.R., Levin, D.E., 2002. HTL1 encodes a novel factor that interacts with the Rsc chromatin-remodeling complex in Saccharomyces cerevisiae. Mol. Cell. Biol., 22, 8165-8174]. Htl1p and RSC components, share the property of associating with TBP a component of general multiprotein transcription factor TFIID [Sanders, S.L., Jennings, J., Canutescu, A., Link, A.J., Weil, P.A., 2002. Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol. Cell. Biol. 22, 4723-4738]. We confirm, by integrating genetic and biochemical experiments, that Htl1p binding to the RSC complex is direct and physiologically relevant and show that it is mediated by Rsc8p, a core component of the RSC complex. Deletion of HTL1, like depletion of RSC core subunits [Moreira, J.M., Holmberg, S., 1999. Transcriptional repression of the yeast CHA1 gene requires the chromatin-remodeling complex Rsc. Embo J., 18, 2836-2844], leads to constitutive transcription of the CHA1 locus. This transcriptional phenotype exhibits variable penetrance. Deletion of HTL1 also leads to hydroxyurea hypersensitivity at 30 degrees C, suggesting a defect in replication/repair. This defect leads, during cell growth, to selection of mutations at the SIR3 locus that suppress hydroxyurea sensitivity.

Keywords

Saccharomyces cerevisiae Proteins, Genes, Fungal, Molecular Sequence Data, Cell Cycle Proteins, Saccharomyces cerevisiae, hydroxyurea, Drug Resistance, Fungal, Escherichia coli, Hydroxyurea, Amino Acid Sequence, DNA, Fungal, Silent Information Regulator Proteins, Saccharomyces cerevisiae, Base Sequence, Formamides, Sequence Homology, Amino Acid, Rsc8, Nuclear Proteins, Chromatin Assembly and Disassembly, Recombinant Proteins, DNA-Binding Proteins, silencing, Mutation, SIR3, Plasmids

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!