
doi: 10.1063/1.858294
The dynamics of countercurrent mixing is examined in the shear layer of an axisymmetric jet. Experiments were designed to establish conditions of absolute instability in a spatially developing shear layer and to document how the instability influences the jet development. By applying suction around the jet periphery, shear-layer velocity ratios R greater than 1 could be studied. Here, R=(U1−U2)/(U1+U2), where U1 is the velocity of the forward jet stream and U2 is the velocity of the counterflowing stream created by suction. The density ratio S=ρ1/ρ2 of the mixing layer was also varied to determine the stability boundary in the S-R plane. The density of the forward stream ρ1 was increased by adding sulfur hexafluoride to the air jet, which provided density ratios between 1 and 5.1. Hot-wire anemometry and flow visualization revealed that a global transition occurs when conditions of absolute instability are established in the jet shear layers. One consequence of this transition is an abrupt decrease in the jet spread rate. The experimentally determined transition between globally stable and globally unstable flow regimes in the S-R plane agrees quite well with predictions of the convective/absolute instability boundary based on the linear stability theory [Pavithran and Redekopp, Phys. Fluids A 1, 1736 (1989)].
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 35 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
