Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Neighbor-sensitive hashing

Authors: Yongjoo Park; Michael Cafarella; Barzan Mozafari;

Neighbor-sensitive hashing

Abstract

Approximate k NN ( k -nearest neighbor) techniques using binary hash functions are among the most commonly used approaches for overcoming the prohibitive cost of performing exact k NN queries. However, the success of these techniques largely depends on their hash functions' ability to distinguish k NN items; that is, the k NN items retrieved based on data items' hashcodes , should include as many true k NN items as possible. A widely-adopted principle for this process is to ensure that similar items are assigned to the same hashcode so that the items with the hashcodes similar to a query's hashcode are likely to be true neighbors. In this work, we abandon this heavily-utilized principle and pursue the opposite direction for generating more effective hash functions for k NN tasks. That is, we aim to increase the distance between similar items in the hashcode space, instead of reducing it. Our contribution begins by providing theoretical analysis on why this revolutionary and seemingly counter-intuitive approach leads to a more accurate identification of k NN items. Our analysis is followed by a proposal for a hashing algorithm that embeds this novel principle. Our empirical studies confirm that a hashing algorithm based on this counter-intuitive idea significantly improves the efficiency and accuracy of state-of-the-art techniques.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!