Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Talanta
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

Micro-electromembrane extraction through volatile free liquid membrane for the determination of β-lactam antibiotics in biological and environmental samples

Authors: Andrea Šlampová; Pavel Kubáň;

Micro-electromembrane extraction through volatile free liquid membrane for the determination of β-lactam antibiotics in biological and environmental samples

Abstract

Micro-electromembrane extraction (μ-EME) was presented for the selective extraction of four main β-lactam antibiotics (penicillin, phenoxypenicillin, ampicillin, and amoxicillin) from complex samples. A volatile solvent (ethyl acetate or chloroform) was sandwiched between a plug of the complex sample and another plug of an aqueous acceptor solution in a transparent polymeric tube and formed the so-called free liquid membrane (FLM). The use of the FLM eliminated the evaporation of the solvent and enabled the μ-EME of the antibiotics, which was carried out by the application of DC voltage to the terminal aqueous solutions. The drugs in the complex sample were selectively transferred through the FLM to the acceptor solution, which was directly used for their determination by micellar electrokinetic chromatography with ultraviolet detection (MEKC-UV). The μ-EME was characterized by sub-μA electric currents, high elimination of matrix components, high stability of operational solutions, and suitability for extracting undiluted complex samples. The μ-EME/MEKC-UV method yielded good analytical repeatability (RSDs of peak areas ≤5%), extraction recoveries (40-84%), accuracy (92-105%) and linearity over one and a half order of magnitude (R2 ≥ 0.9998), and was applied to the determination of the four β-lactam antibiotics in human serum and waste water at clinically and environmentally relevant concentration levels. Further improvement in the method sensitivity was achieved by changing the μ-EME tube geometry (conical shape) and increasing the complex sample volume (100 μL). The analytes were enriched by factors of 7.6-11.5, the limits of detection dropped down to less than 18 ng/mL, and the modified μ-EME/MEKC-UV method enabled the trace determination of β-lactam antibiotics in complex samples.

Country
Czech Republic
Related Organizations
Keywords

free liquid membrane, volatile solvent, Electricity, electromembrane extraction, Solvents, Humans, Membranes, Artificial, beta-Lactams, Anti-Bacterial Agents

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!