Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Experimental Neurolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Neurology
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A partial GDNF depletion leads to earlier age-related deterioration of motor function and tyrosine hydroxylase expression in the substantia nigra

Authors: Heather A. Boger; A. C. Tomac; A.-Ch. Granholm; Alice C. Smith; Lawrence D. Middaugh; Vandana Zaman; Barry J. Hoffer; +1 Authors

A partial GDNF depletion leads to earlier age-related deterioration of motor function and tyrosine hydroxylase expression in the substantia nigra

Abstract

Glial cell line-derived neurotrophic factor (GDNF) is a trophic factor for peripheral organs, spinal cord, and midbrain dopamine (DA) neurons. Levels of GDNF deteriorate in the substantia nigra in Parkinson's disease (PD). A heterozygous mouse model was created to assess whether chronic reductions in this neurotrophic factor impact motor function and the nigrostriatal dopamine system during the aging process. Due to the important role GDNF plays in kidney development, kidney function and histology were assessed and were found to be normal in both wild-type (WT) and GDNF+/- mice up to 22 months of age. Further, the animals of both genotypes had similar weights throughout the experiment. Locomotor activity was assessed for male WT and GDNF+/- mice at 4-month intervals from 4 to 20 months of age. Both GDNF+/- and WT mice exhibited an age-related decline in horizontal activity, although this was found 4 months earlier in GDNF+/- mice, at 12 months of age. Comparison of young (8 month old) and aged (20 month old) GDNF+/- and WT mice on an accelerating rotarod apparatus established a deficiency for aged but not young GDNF+/- mice, while aged WT mice performed as well as young WT mice on this task. Finally, both WT and GDNF+/- mice exhibited an age-related decrease in substantia nigra TH immunostaining, which was accelerated in the GDNF+/- mice. These behavioral and histological alterations suggest that GDNF may be an important factor for maintenance of motor coordination and spontaneous activity as well as DA neuronal function during aging, and further suggest that GDNF+/- mice may serve as a model for neuroprotective or rescue studies.

Keywords

Male, Aging, Behavior, Animal, Genotype, Reverse Transcriptase Polymerase Chain Reaction, Body Weight, Age Factors, Gene Expression, Cell Count, Enzyme-Linked Immunosorbent Assay, Mice, Transgenic, Motor Activity, Kidney, Immunohistochemistry, Mice, Creatinine, Multivariate Analysis, Animals, Glial Cell Line-Derived Neurotrophic Factor, RNA, Messenger

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    95
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
95
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?