
arXiv: 1907.01734
In medical real-world study (RWS), how to fully utilize the fragmentary and scarce information in model training to generate the solid diagnosis results is a challenging task. In this work, we introduce a novel multi-instance neural network, AMI-Net+, to train and predict from the incomplete and extremely imbalanced data. It is more effective than the state-of-art method, AMI-Net. First, we also implement embedding, multi-head attention and gated attention-based multi-instance pooling to capture the relations of symptoms themselves and with the given disease. Besides, we propose var-ious improvements to AMI-Net, that the cross-entropy loss is replaced by focal loss and we propose a novel self-adaptive multi-instance pooling method on instance-level to obtain the bag representation. We validate the performance of AMI-Net+ on two real-world datasets, from two different medical domains. Results show that our approach outperforms other base-line models by a considerable margin.
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Machine Learning (stat.ML), Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Machine Learning (stat.ML), Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
