Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Virologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Virology
Article . 2013 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
Journal of Virology
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

Herpes Simplex Virus 1-Encoded Tegument Protein VP16 Abrogates the Production of Beta Interferon (IFN) by Inhibiting NF-κB Activation and Blocking IFN Regulatory Factor 3 To Recruit Its Coactivator CBP

Authors: Lin, Rongtuan; Xing, Junji; Ni, Liwen; Wang, Shuai; Wang, Kezhen; Zheng, Chunfu;

Herpes Simplex Virus 1-Encoded Tegument Protein VP16 Abrogates the Production of Beta Interferon (IFN) by Inhibiting NF-κB Activation and Blocking IFN Regulatory Factor 3 To Recruit Its Coactivator CBP

Abstract

ABSTRACT Host cells activate innate immune signaling pathways to defend against invading pathogens. To survive within an infected host, viruses have evolved intricate strategies to counteract host immune responses. Herpesviruses, including herpes simplex virus type 1 (HSV-1), have large genomes and therefore have the capacity to encode numerous proteins that modulate host innate immune responses. Here we define the contribution of HSV-1 tegument protein VP16 in the inhibition of beta interferon (IFN-β) production. VP16 was demonstrated to significantly inhibit Sendai virus (SeV)-induced IFN-β production, and its transcriptional activation domain was not responsible for this inhibition activity. Additionally, VP16 blocked the activation of the NF-κB promoter induced by SeV or tumor necrosis factor alpha treatment and expression of NF-κB-dependent genes through interaction with p65. Coexpression analysis revealed that VP16 selectively blocked IFN regulatory factor 3 (IRF-3)-mediated but not IRF-7-mediated transactivation. VP16 was able to bind to IRF-3 but not IRF-7 in vivo , based on coimmunoprecipitation analysis, but it did not affect IRF-3 dimerization, nuclear translocation, or DNA binding activity. Rather, VP16 interacted with the CREB binding protein (CBP) coactivator and efficiently inhibited the formation of the transcriptional complexes IRF-3–CBP in the context of HSV-1 infection. These results illustrate that VP16 is able to block the production of IFN-β by inhibiting NF-κB activation and interfering with IRF-3 to recruit its coactivator CBP, which may be important to the early events leading to HSV-1 infection.

Country
Canada
Related Organizations
Keywords

Transcriptional Activation, 570, Interferon Regulatory Factor-7, Immunology, Herpesvirus 1, Human, Sendai virus, Microbiology, Virology, Chlorocebus aethiops, Animals, Humans, Promoter Regions, Genetic, Vero Cells, Transcription Factor RelA, Herpes Simplex Virus Protein Vmw65, Interferon-beta, Experimental Medicine, CREB-Binding Protein, Immunity, Innate, Protein Structure, Tertiary, HEK293 Cells, Insect Science, Host-Pathogen Interactions, Interferon Regulatory Factor-3, HeLa Cells

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    123
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
123
Top 1%
Top 10%
Top 10%
gold