Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Inherited...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Inherited Metabolic Disease
Article . 2012 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Inherited Metabolic Disease
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2012
License: CC BY NC
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Radboud Repository
Article . 2012
Data sources: Radboud Repository
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The measurement of urinary Δ1‐piperideine‐6‐carboxylate, the alter ego of α‐aminoadipic semialdehyde, in Antiquitin deficiency

Authors: Struys, E.A.; Bok, L.A.; Emal, D.; Houterman, S.; Willemsen, M.A.A.P.; Jakobs, C.;

The measurement of urinary Δ1‐piperideine‐6‐carboxylate, the alter ego of α‐aminoadipic semialdehyde, in Antiquitin deficiency

Abstract

AbstractThe assessment of urinary α‐aminoadipic semialdehyde (α‐AASA) has become the diagnostic laboratory test for pyridoxine dependent seizures (PDS). α‐AASA is in spontaneous equilibrium with its cyclic form Δ1‐piperideine‐6‐carboxylate (P6C); a molecule with a heterocyclic ring structure. Ongoing diagnostic screening and monitoring revealed that in some individuals with milder ALDH7A1 variants, and patients co‐treated with a lysine restricted diet, α‐AASA was only modestly increased. This prompted us to investigate the diagnostic power and added value of the assessment of urinary P6C compared to α‐AASA. Urine samples were diluted to a creatinine content of 0.1 mmol/L, followed by the addition of 0.01 nmol [2H9]pipecolic acid as internal standard (IS) and 5 μL was injected onto a Waters C18 T3 HPLC column. Chromatography was performed using water/methanol 97/3 (v/v) including 0.03 % formic acid by volume with a flow rate of 150 μL/min and detection was accomplished in the multiple reaction monitoring mode: P6C m/z 128.1 > 82.1; [2H9]pipecolic acid m/z 139.1 > 93.1. Due to the dualistic nature of α‐AASA/P6C, and the lack of a proper internal standard, the method is semi quantitative. The intra‐assay CVs (n = 10) for two urine samples of proven PDS patients with only modest P6C increases were 4.7% and 8.1%, whereas their inter‐assay CVs (n = 10) were 16 and 18% respectively. In all 40 urine samples from 35 individuals with proven PDS, we detected increased levels of P6C. Therefore, we conclude that the diagnostic power of the assessments of urinary P6C and α‐AASA is comparable.

Country
Netherlands
Keywords

DCN MP - Plasticity and memory, Original Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Average
Green
hybrid