
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We show a simple method to visualize the morphology of water adsorbed within the pore network of colloidal crystals made of submicrometer silica spheres. Water is replicated into silica by modified silicon tetrachloride hydrolysation under standard ambient conditions, making it visible to standard electronic microscopy and thus allowing one to discern the original water distribution. Different distribution patterns are identified depending on the water content, surface condition, and spheres arrangement. The dimension and shape of wetting layers (covering the submicrometer spheres) and capillary bridges (joining them) are measurable at the nanoscale. We finally use these findings to demonstrate proof-of-principle of fabrication of isolated and freestanding silica nanorings by using hydrophobic polymeric templates and selective etching.
Colloidal crystals, Capillary force
Colloidal crystals, Capillary force
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 16 | |
downloads | 19 |