Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A rapidly evolving MYB-related protein causes species isolation in Drosophila

Authors: Daniel A, Barbash; Dominic F, Siino; Aaron M, Tarone; John, Roote;

A rapidly evolving MYB-related protein causes species isolation in Drosophila

Abstract

Matings among different species of animals or plants often result in sterile or lethal hybrids. Identifying the evolutionary forces that create hybrid incompatibility alleles is fundamental to understanding the process of speciation, but very few such alleles have been identified, particularly in model organisms that are amenable to experimental manipulation. We report here the cloning of the first, to our knowledge, Drosophila melanogaster gene involved in hybrid incompatibilities, Hybrid male rescue ( Hmr ). Hmr causes lethality and female sterility in hybrids among D. melanogaster and its sibling species. We have found that Hmr encodes a protein with homology to a family of MYB-related DNA-binding transcriptional regulators. The HMR protein has evolved both amino acid substitutions and insertions and deletions at an extraordinarily high rate between D. melanogaster and its sibling species, including in its predicted DNA-binding domain. Our results suggest that hybrid lethality may result from disruptions in gene regulation, and we also propose that rapid evolution may be a hallmark of speciation genes in general.

Related Organizations
Keywords

Male, Base Sequence, Sequence Homology, Amino Acid, Molecular Sequence Data, Animals, Genetically Modified, Proto-Oncogene Proteins c-myb, Drosophila melanogaster, Species Specificity, Animals, Female, Amino Acid Sequence, Cloning, Molecular, DNA Primers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    241
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
241
Top 10%
Top 1%
Top 1%
bronze