
pmid: 25861868
Myostatin (mstn) is an important member of TGF-β superfamily, a muscle growth inhibitor. Though mstn has been identified in many organisms, little is known about this gene in highland fish, Gymnocypris przewalskii endemic to the Qinghai-Tibetan Plateau. In this study, we first cloned two paralogous mstn genes (mstn1 and mstn2) from G. przewalskii through homologue cloning. The 3D structures of both Mstn proteins varied in the numbers of β-sheets and conformations of α-helices. The branch-site model showed that mstn1 has undergone positive selection, and two positively selected sites (107M and 181T) were located on the random coils of the 3D protein structure. Expression patterns indicated that the mstn1 expressed widely, while the mstn2 only expressed in the muscle and brain. During the early stage of embryo development, the expression levels of both mstn paralogous genes showed different increasing trends. These results suggest that it is diverging in two mstn paralogues of G. przewalskii via specific differences in gene structure, protein structure, selection pressure and gene expression patterns. Taken together, this study provides novel contribution on the research topics of growth related gene function and mechanism of highland fish in extreme aquatic environment on the Qinghai-Tibetan Plateau.
Base Sequence, Muscles, Molecular Sequence Data, Fishes, Brain, Embryonic Development, Gene Expression, Myostatin, Tibet, Transforming Growth Factor beta, Animals, Amino Acid Sequence, Cloning, Molecular, Sequence Alignment, Phylogeny
Base Sequence, Muscles, Molecular Sequence Data, Fishes, Brain, Embryonic Development, Gene Expression, Myostatin, Tibet, Transforming Growth Factor beta, Animals, Amino Acid Sequence, Cloning, Molecular, Sequence Alignment, Phylogeny
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
