Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Pharmacolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Pharmacology
Article . 2000 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Molecular Pharmacology
Article . 2000 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evidence for Peroxisome Proliferator-Activated Receptor (PPAR)α-Independent Peroxisome Proliferation: Effects of PPARγ/δ-Specific Agonists in PPARα-Null Mice

Authors: J G, DeLuca; T W, Doebber; L J, Kelly; R K, Kemp; S, Molon-Noblot; S P, Sahoo; J, Ventre; +4 Authors

Evidence for Peroxisome Proliferator-Activated Receptor (PPAR)α-Independent Peroxisome Proliferation: Effects of PPARγ/δ-Specific Agonists in PPARα-Null Mice

Abstract

Peroxisome proliferators are a diverse group of compounds that cause hepatic hypertrophy and hyperplasia, increase peroxisome number, and on chronic high-dose administration, lead to rodent liver tumorigenesis. Various lines of evidence have led to the conclusion that these agents induce their pleiotropic effects exclusively via agonism of peroxisome proliferator-activated receptor (PPAR)alpha, a member of the steroid receptor superfamily involved in the regulation of fatty acid metabolism. Recently, agonists of two other members of this receptor family have been identified. PPARgamma is predominantly expressed in adipocytes where it mediates differentiation; PPARdelta is a widely expressed orphan receptor with yet unresolved physiologic functions. In the course of characterizing newer PPAR ligands, we noted that highly selective PPARgamma agonists or dual PPARgamma/PPARdelta agonists, lacking apparent murine PPARalpha agonist activity, cause peroxisome proliferation in CD-1 mice. We therefore made use of PPARalpha knockout mice to investigate whether these effects resulted from agonism of PPARalpha by these agents at very high dose levels or whether PPARgamma (or PPARdelta) agonism alone can result in peroxisome proliferation. We report here that several parameters linked to the hepatic peroxisome proliferation response in mice that were seen with these agents resulted from PPARalpha-independent effects.

Keywords

Male, Mice, Inbred ICR, Receptors, Cytoplasmic and Nuclear, Organ Size, Mice, Thiazoles, Pyrimidines, Gene Expression Regulation, Liver, Peroxisomes, Animals, Female, Peroxisome Proliferators, Thiazolidinediones, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!