Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article . 2011
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article . 2011 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Protein translocation across the ER membrane

Authors: Zimmermann, Richard; Eyrisch, Susanne; Ahmad, Mazen; Helms, Volkhard;

Protein translocation across the ER membrane

Abstract

Protein translocation into the endoplasmic reticulum (ER) is the first and decisive step in the biogenesis of most extracellular and many soluble organelle proteins in eukaryotic cells. It is mechanistically related to protein export from eubacteria and archaea and to the integration of newly synthesized membrane proteins into the ER membrane and the plasma membranes of eubacteria and archaea (with the exception of tail anchored membrane proteins). Typically, protein translocation into the ER involves cleavable amino terminal signal peptides in precursor proteins and sophisticated transport machinery components in the cytosol, the ER membrane, and the ER lumen. Depending on the hydrophobicity and/or overall amino acid content of the precursor protein, transport can occur co- or posttranslationally. The respective mechanism determines the requirements for certain cytosolic transport components. The two mechanisms merge at the level of the ER membrane, specifically, at the heterotrimeric Sec61 complex present in the membrane. The Sec61 complex provides a signal peptide recognition site and forms a polypeptide conducting channel. Apparently, the Sec61 complex is gated by various ligands, such as signal peptides of the transport substrates, ribosomes (in cotranslational transport), and the ER lumenal molecular chaperone, BiP. Binding of BiP to the incoming polypeptide contributes to efficiency and unidirectionality of transport. Recent insights into the structure of the Sec61 complex and the comparison of the transport mechanisms and machineries in the yeast Saccharomyces cerevisiae, the human parasite Trypanosoma brucei, and mammals have various important mechanistic as well as potential medical implications. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.

Related Organizations
Keywords

Molecular chaperones, Protein translocation, Biophysics, Structural analysis, Cell Biology, Intracellular Membranes, Endoplasmic Reticulum, Biochemistry, Protein Transport, Animals, Humans, Driving force, Membrane insertion, Endoplasmic reticulum

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    215
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
215
Top 1%
Top 10%
Top 1%
hybrid