Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1103/physre...
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://link.aps.org/pdf/10.110...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2019
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spectrum of the strange hidden charm molecular pentaquarks in chiral effective field theory

Authors: Bo Wang; Lu Meng; Shi-Lin Zhu;

Spectrum of the strange hidden charm molecular pentaquarks in chiral effective field theory

Abstract

We calculate the effective potentials of the $��_c\bar{D}^{(\ast)}$, $��_c^\prime\bar{D}^{(\ast)}$ and $��_c^\ast\bar{D}^{(\ast)}$ systems with the chiral effective field theory up to the next-to-leading order. We simultaneously consider the short-, intermediate- and long-range interactions. With the newly observed $P_c$ spectra as inputs, we construct the quark-level contact Lagrangians to relate the low energy constants to those of $��_c\bar{D}^{(\ast)}$ with the help of quark model. Our calculation indicates there are seven bound states in the $I=0$ strange hidden charm $[��_c^\prime\bar{D}^{(\ast)}]_J~(J=\frac{1}{2},\frac{3}{2})$ and $[��_c^\ast\bar{D}^{(\ast)}]_J~(J=\frac{1}{2},\frac{3}{2},\frac{5}{2})$ systems. Our analyses also disfavor the $��_c\bar{D}^{(\ast)}$ bound states. However, we obtain three new hadronic molecules in the isoscalar $[��_c\bar{D}^{(\ast)}]_J~(J=\frac{1}{2},\frac{3}{2})$ systems. The masses of $[��_c\bar{D}]_{1/2}$, $[��_c\bar{D}^{\ast}]_{1/2}$ and $[��_c\bar{D}^{\ast}]_{3/2}$ are predicted to be $4319.4^{+2.8}_{-3.0}$ MeV, $4456.9^{+3.2}_{-3.3}$ MeV and $4463.0^{+2.8}_{-3.0}$ MeV, respectively. We also notice the one-eta-exchange influence is rather feeble. Binding solutions in the $I=1$ channels are nonexistent. We hope the future analyses at LHCb can seek for these new $P_{cs}$s in the $J����$ final states, especially near the thresholds of $��_c\bar{D}^{(\ast)}$.

9 pages, 2 figures, and 4 tables

Related Organizations
Keywords

Nuclear Theory (nucl-th), High Energy Physics - Phenomenology, High Energy Physics - Experiment (hep-ex), High Energy Physics - Lattice, High Energy Physics - Phenomenology (hep-ph), Nuclear Theory, High Energy Physics - Lattice (hep-lat), FOS: Physical sciences, Nuclear Experiment (nucl-ex), Nuclear Experiment, High Energy Physics - Experiment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    64
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
64
Top 1%
Top 10%
Top 1%
Green
hybrid