Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
License: CC BY
Data sources: UnpayWall
Development
Article . 2003 . Peer-reviewed
Data sources: Crossref
Development
Article . 2003
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Grainy head controls apical membrane growth and tube elongation in response to Branchless/FGF signalling

Authors: Johanna, Hemphälä; Anne, Uv; Rafael, Cantera; Sarah, Bray; Christos, Samakovlis;

Grainy head controls apical membrane growth and tube elongation in response to Branchless/FGF signalling

Abstract

Epithelial organogenesis involves concerted movements and growth of distinct subcellular compartments. We show that apical membrane enlargement is critical for lumenal elongation of the Drosophila airways, and is independently controlled by the transcription factor Grainy head. Apical membrane overgrowth in grainy head mutants generates branches that are too long and tortuous without affecting epithelial integrity, whereas Grainy head overexpression limits lumenal growth. The chemoattractant Branchless/FGF induces tube outgrowth, and we find that it upregulates Grainy head activity post-translationally, thereby controlling apical membrane expansion to attain its key role in branching. We favour a two-step model for FGF in branching: first, induction of cell movement and apical membrane growth, and second, activation of Grainy head to limit lumen elongation,ensuring that branches reach and attain their characteristic lengths.

Keywords

Cell Membrane, Cell Polarity, Immunohistochemistry, Epithelium, DNA-Binding Proteins, Fibroblast Growth Factors, Trachea, Microscopy, Electron, Drosophila melanogaster, Genes, Reporter, Morphogenesis, Animals, Drosophila Proteins, Insect Proteins, fas Receptor, Cell Size, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    112
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
112
Top 10%
Top 10%
Top 1%
hybrid