
Dealing with the large-scale text knowledge on the Web has become increasingly important with the development of the Web, yet it confronts with several challenges, one of which is to find out as much semantics as possible to represent text knowledge. As the text semantic mining process is also the knowledge representation process of text, this paper proposes a text knowledge representation model called text semantic mining model (TSMM) based on the algebra of human concept learning, which both carries rich semantics and is constructed automatically with a lower complexity. Herein, the algebra of human concept learning is introduced, which enables TSMM containing rich semantics. Then the formalization and the construction process of TSMM are discussed. Moreover, three types of reasoning rules based on TSMM are proposed. Lastly, experiments and the comparison with current text representation models show that the given model performs better than others.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
