Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Unsupervised Depth-Estimation Model for Monocular Images Based on Perceptual Image Error Assessment

Authors: Hyeseung Park; Seungchul Park;

An Unsupervised Depth-Estimation Model for Monocular Images Based on Perceptual Image Error Assessment

Abstract

In this paper, we propose a novel unsupervised learning-based model for estimating the depth of monocular images by integrating a simple ResNet-based auto-encoder and some special loss functions. We use only stereo images obtained from binocular cameras as training data without using depth ground-truth data. Our model basically outputs a disparity map that is necessary to warp an input image to an image corresponding to a different viewpoint. When the input image is warped using the output-disparity map, distortions of various patterns inevitably occur in the reconstructed image. During the training process, the occurrence frequency and size of these distortions gradually decrease, while the similarity between the reconstructed and target images increases, which proves that the accuracy of the predicted disparity maps also increases. Therefore, one of the important factors in this type of training is an efficient loss function that accurately measures how much the difference in quality between the reconstructed and target images is and guides the gap to be properly and quickly closed as the training progresses. In recent related studies, the photometric difference was calculated through simple methods such as L1 and L2 loss or by combining one of these with a traditional computer vision-based hand-coded image-quality assessment algorithm such as SSIM. However, these methods have limitations in modeling various patterns at the level of the human visual system. Therefore, the proposed model uses a pre-trained perceptual image-quality assessment model that effectively mimics human-perception mechanisms to measure the quality of distorted images as image-reconstruction loss. In order to highlight the performance of the proposed loss functions, a simple ResNet50-based network is adopted in our model. We trained our model using stereo images of the KITTI 2015 driving dataset to measure the pixel-level depth for 768 × 384 images. Despite the simplicity of the network structure, thanks to the effectiveness of the proposed image-reconstruction loss, our model outperformed other state-of-the-art studies that have been trained in unsupervised methods on a variety of evaluation indicators.

Related Organizations
Keywords

Technology, QH301-705.5, T, Physics, QC1-999, monocular depth estimation, monocular depth estimation; perceptual image-quality assessment; PieAPP; KITTI, Engineering (General). Civil engineering (General), PieAPP, Chemistry, KITTI, perceptual image-quality assessment, TA1-2040, Biology (General), QD1-999

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold