
doi: 10.3390/sym10050172
The proposed q-rung orthopair fuzzy set (q-ROFS) and picture fuzzy set (PIFS) are two powerful tools for depicting fuzziness and uncertainty. This paper proposes a new tool, called q-rung picture linguistic set (q-RPLS) to deal with vagueness and impreciseness in multi-attribute group decision-making (MAGDM). The proposed q-RPLS takes full advantages of q-ROFS and PIFS and reflects decision-makers’ quantitative and qualitative assessments. To effectively aggregate q-rung picture linguistic information, we extend the classic Heronian mean (HM) to q-RPLSs and propose a family of q-rung picture linguistic Heronian mean operators, such as the q-rung picture linguistic Heronian mean (q-RPLHM) operator, the q-rung picture linguistic weighted Heronian mean (q-RPLWHM) operator, the q-rung picture linguistic geometric Heronian mean (q-RPLGHM) operator, and the q-rung picture linguistic weighted geometric Heronian mean (q-RPLWGHM) operator. The prominent advantage of the proposed operators is that the interrelationship between q-rung picture linguistic numbers (q-RPLNs) can be considered. Further, we put forward a novel approach to MAGDM based on the proposed operators. We also provide a numerical example to demonstrate the validity and superiorities of the proposed method.
<i>q</i>-rung picture linguistic set; Heronian mean; <i>q</i>-rung picture linguistic Heronian mean; multi-attribute group decision-making
<i>q</i>-rung picture linguistic set; Heronian mean; <i>q</i>-rung picture linguistic Heronian mean; multi-attribute group decision-making
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 112 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
