Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterization of matrix metalloproteinase-26, a novel metalloproteinase widely expressed in cancer cells of epithelial origin

Authors: G N, Marchenko; B I, Ratnikov; D V, Rozanov; A, Godzik; E I, Deryugina; A Y, Strongin;

Characterization of matrix metalloproteinase-26, a novel metalloproteinase widely expressed in cancer cells of epithelial origin

Abstract

Identification of expanding roles for matrix metalloproteinases (MMPs) in complex regulatory processes of tissue remodelling has stimulated the search for genes encoding proteinases with unique functions, regulation and expression patterns. By using a novel cloning strategy, we identified three previously unknown human MMPs, i.e. MMP-21, MMP-26 and MMP-28, in comprehensive gene libraries. The present study is focused on the gene and the protein of a novel MMP, MMP-26. Our findings show that MMP-26 is specifically expressed in cancer cells of epithelial origin, including carcinomas of lung, prostate and breast. Several unique structural and regulatory features, including an unusual ‘cysteine-switch’ motif, discriminate broad-spectrum MMP-26 from most other MMPs. MMP-26 efficiently cleaves fibrinogen and extracellular matrix proteins, including fibronectin, vitronectin and denatured collagen. Protein sequence, minimal modular domain structure, exon–intron mapping and computer modelling demonstrate similarity between MMP-26 and MMP-7 (matrilysin). However, substrate specificity and transcriptional regulation, as well as the functional role of MMP-26 and MMP-7 in cancer, are likely to be distinct. Despite these differences, matrilysin-2 may be a suitable trivial name for MMP-26. Our observations suggest an important specific function for MMP-26 in tumour progression and angiogenesis, and confirm and extend the recent findings of other authors [Park, Ni, Gerkema, Liu, Belozerov and Sang (2000) J. Biol. Chem. 275, 20540–20544; Uría and López-Otín (2000) Cancer Res. 60, 4745–4751; de Coignac, Elson, Delneste, Magistrelli, Jeannin, Aubry, Berthier, Schmitt, Bonnefoy and Gauchat (2000) Eur. J. Biochem. 267, 3323–3329].

Keywords

Models, Molecular, Base Sequence, Sequence Homology, Amino Acid, Protein Conformation, Molecular Sequence Data, Epithelial Cells, Matrix Metalloproteinases, Recombinant Proteins, Substrate Specificity, Catalytic Domain, Neoplasms, Matrix Metalloproteinases, Secreted, Humans, Amino Acid Sequence, Cloning, Molecular, Promoter Regions, Genetic, DNA Primers, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    129
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
129
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!