
arXiv: 2005.00644
Deep learning approaches to semantic parsing require a large amount of labeled data, but annotating complex logical forms is costly. Here, we propose Syntactic Question Abstraction and Retrieval (SQAR), a method to build a neural semantic parser that translates a natural language (NL) query to a SQL logical form (LF) with less than 1,000 annotated examples. SQAR first retrieves a logical pattern from the train data by computing the similarity between NL queries and then grounds a lexical information on the retrieved pattern in order to generate the final LF. We validate SQAR by training models using various small subsets of WikiSQL train data achieving up to 4.9% higher LF accuracy compared to the previous state-of-the-art models on WikiSQL test set. We also show that by using query-similarity to retrieve logical pattern, SQAR can leverage a paraphrasing dataset achieving up to 5.9% higher LF accuracy compared to the case where SQAR is trained by using only WikiSQL data. In contrast to a simple pattern classification approach, SQAR can generate unseen logical patterns upon the addition of new examples without re-training the model. We also discuss an ideal way to create cost efficient and robust train datasets when the data distribution can be approximated under a data-hungry setting.
Accepted to AKBC 2020 (conference paper)
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Computation and Language, Computation and Language (cs.CL), Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Computation and Language, Computation and Language (cs.CL), Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
