Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMC Cancerarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Cancer
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Cancer
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Cancer
Article . 2021
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Cancer
Article . 2021
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of a nomogram model to predict survival outcomes in patients with primary hepatic neuroendocrine tumors based on SEER database

Authors: Ziteng Zhang; Xin Zhao; Zhiyan Li; Youchun Wu; Yao Liu; Zhiwei Li; Guobao Li;

Development of a nomogram model to predict survival outcomes in patients with primary hepatic neuroendocrine tumors based on SEER database

Abstract

Abstract Background Primary hepatic neuroendocrine tumors (PH-NETs) are extremely rare and unknown. Because of its rarity, its prognosis features and influencing factors are not well established. Methods Data of 140 patients with PH-NETs diagnosed in the SEER database from 1975 to 2016 were collected. The demographics and clinic-pathological features were described. By using propensity-score matching (PSM) analysis, three associated cohorts were selected to describe the malignancy of PH-NETs and univariate analysis was conducted. Then, multivariate Cox analyses were performed and a predicting nomograph was constructed. C-index, receiver operating characteristic (ROC) curve and calibration curves were used to evaluate the predictive value of nomogram. Results The overall survival outcomes of PH-NETs were superior to hepatocellular carcinoma (HCC) with a mean survival time 30.64 vs 25.11 months (p = 0.052), but inferior to gastrointestinal tract neuroendocrine tumors in situ (GI-NETs in situ) with a mean survival time 30.64 vs 41.62 months (p = 0.017). With reference to gastrointestinal neuroendocrine tumors with liver metastasis (GI-NETs-LM), GI-NETs-LM had better outcomes in short time (1-year survival rate: 64.75% vs 56.43%) but was worse in long time (5-year survival rate: 8. 63% vs 18.57%). Multivariate Cox analyses showed that tumor grade and surgery were two independent factors for prognosis of the patients (p < 0.00). Tumor grade and surgery were used to construct the predicting nomogram. The C-index was 0.79 (95%CI = 0.75–0.83). The area under curve (AUC) values in ROC were 0.868 in 1-year and 0.917 in 3-year survival and the calibration curves showed good consistency. Conclusions The overall prognosis PH-NETs is generally favorable, better than HCC and GI-NETs-LM in long term. Preoperative biopsy and complete pathological diagnosis were recommended. Radical surgical intervention including transplantation was the first choice in PH-NETs therapy.

Related Organizations
Keywords

Adult, Male, Kaplan-Meier Estimate, Risk Assessment, Primary hepatic neuroendocrine tumors (PH-NETs), Young Adult, Predictive Value of Tests, Humans, Nomogram model, RC254-282, Aged, Neoplasm Staging, Retrospective Studies, Research, Liver Neoplasms, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, Middle Aged, SEER database, Survival Rate, Neuroendocrine Tumors, Nomograms, Liver, ROC Curve, Female, Follow-Up Studies, SEER Program

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
gold