Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Dynami...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Dynamics
Article . 2005 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Slow and fast fiber isoform gene expression is systematically altered in skeletal muscle of the Sox6 mutant, p100H

Authors: Nobuko, Hagiwara; Betty, Ma; Alice, Ly;

Slow and fast fiber isoform gene expression is systematically altered in skeletal muscle of the Sox6 mutant, p100H

Abstract

AbstractWe have previously demonstrated that p100H mutant mice, which lack a functional Sox6 gene, exhibit skeletal and cardiac muscle degeneration and develop cardiac conduction abnormalities soon after birth. To understand the role of Sox6 in skeletal muscle development, we identified muscle‐specific genes differentially expressed between wild‐type and p100H mutant skeletal muscles and investigated their temporal expression in the mutant muscle. We found that, in the mutant skeletal muscle, slow fiber and cardiac isoform genes are expressed at significantly higher levels, whereas fast fiber isoform genes are expressed at significantly lower levels than wild‐type. Onset of this aberrant fiber type‐specific gene expression in the mutant coincides with the beginning of the secondary myotube formation, at embryonic day 15–16 in mice. Together with our earlier report, demonstrating early postnatal muscle defects in the Sox6 null‐p100H mutant, the present results suggest that Sox6 likely plays an important role in muscle development. Developmental Dynamics 234:301–311, 2005. © 2005 Wiley‐Liss, Inc.

Related Organizations
Keywords

Muscles, Blotting, Western, Homozygote, High Mobility Group Proteins, Gene Expression Regulation, Developmental, Mice, Transgenic, Blotting, Northern, DNA-Binding Proteins, Mice, Muscle Fibers, Slow-Twitch, Gene Expression Regulation, Muscle Fibers, Fast-Twitch, Mutation, Animals, Protein Isoforms, RNA, Muscle, Skeletal, In Situ Hybridization, DNA Primers, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    74
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
74
Top 10%
Top 10%
Top 10%
bronze