
arXiv: 2009.01211
Abstract This paper concerns a special class of n-point correlation functions of operators in the stress tensor supermultiplet of $$ \mathcal{N} $$ N = 4 supersymmetric SU(N) Yang-Mills theory. These are “maximal U(1)Y-violating” correlators that violate the bonus U(1)Y charge by a maximum of 2(n − 4) units. We will demonstrate that such correlators satisfy SL(2, ℤ)-covariant recursion relations that relate n-point correlators to (n − 1)-point correlators in a manner analogous to the soft dilaton relations that relate the corresponding amplitudes in flat-space type IIB superstring theory. These recursion relations are used to determine terms in the large-N expansion of n-point maximal U(1)Y-violating correlators in the chiral sector, including correlators with four superconformal stress tensor primaries and (n − 4) chiral Lagrangian operators, starting from known properties of the n = 4 case. We concentrate on the first three orders in 1/N beyond the supergravity limit. The Mellin representations of the correlators are polynomials in Mellin variables, which correspond to higher derivative contact terms in the low-energy expansion of type IIB superstring theory in AdS5× S5 at the same orders as R4, d4R4 and d6R4. The coupling constant dependence of these terms is found to be described by non-holomorphic modular forms with holomorphic and anti-holomorphic weights (n − 4, 4 − n) that are SL(2, ℤ)-covariant derivatives of Eisenstein series and certain generalisations. This determines a number of non-leading contributions to U(1)Y-violating n-particle interactions (n > 4) in the low-energy expansion of type IIB superstring amplitudes in AdS5× S5.
High Energy Physics - Theory, 4902 Mathematical Physics, Conformal Field Theory, FOS: Physical sciences, 1/N Expansion, QC770-798, AdS-CFT Correspondence, High Energy Physics - Theory (hep-th), Nuclear and particle physics. Atomic energy. Radioactivity, 49 Mathematical Sciences, 5106 Nuclear and Plasma Physics, Scattering Amplitudes, 51 Physical Sciences, 5107 Particle and High Energy Physics
High Energy Physics - Theory, 4902 Mathematical Physics, Conformal Field Theory, FOS: Physical sciences, 1/N Expansion, QC770-798, AdS-CFT Correspondence, High Energy Physics - Theory (hep-th), Nuclear and particle physics. Atomic energy. Radioactivity, 49 Mathematical Sciences, 5106 Nuclear and Plasma Physics, Scattering Amplitudes, 51 Physical Sciences, 5107 Particle and High Energy Physics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
