Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1145/317954...
Article . 2018 . Peer-reviewed
License: ACM Copyright Policies
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Conflict-free vectorization of associative irregular applications with recent SIMD architectural advances

Authors: Gagan Agrawal; Peng Jiang;

Conflict-free vectorization of associative irregular applications with recent SIMD architectural advances

Abstract

Irregular applications that involve indirect memory accesses were traditionally considered unsuitable for SIMD processing. Though some progress has been made in recent years, the existing approaches require either expensive data reorganization or favorable input distribution to deliver good performance. In this work, we propose a novel vectorization approach called in-vector reduction that can efficiently accelerate a class of associative irregular applications. This approach exploits associativity in the irregular reductions to resolve the data conflicts within SIMD vectors. We implement in-vector reduction with the new conflict detecting instructions that are supported in Intel AVX-512 instruction set and provide a programming interface to facilitate the vectorization of such associative irregular applications. Compared with previous approaches, in-vector reduction eliminates a large part of the overhead of data reorganization and achieves high SIMD utilization even under adverse input distributions. The evaluation results show that our approach is efficient in vectorizing a diverse set of irregular applications, including graph algorithms, particle simulation codes, and hash-based aggregation. Our vectorization achieves 1.5x to 5.5x speedups over the original sequential codes on a single core of Intel Xeon Phi and outperforms a competing approach, conflict-masking based vectorization, by 1.4x to 11.8x.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?