
For zero energy, E=0, we derive exact, quantum solutions for all power-law potentials, V(r)=−γ/rν, with γ>0 and −∞<ν<∞. The solutions are, in general, Bessel functions of powers of r. For ν>2 and l≥1 the solutions are normalizable. Surprisingly, the solutions for ν<−2, which correspond to highly repulsive potentials, are also normalizable, for all l≥0. For these |ν|>2 the partial-wave Hamiltonians, Hl, have overcomplete sets of normalizable eigensolutions. We discuss how to obtain self-adjoint extensions of Hl such that the above E=0 solutions become included in their domains. When 2>ν≥−2 the E=0 solutions are not square-integrable. The ν=2 solutions are also unnormalizable, but are exceptional solutions. We also find that, by increasing the dimension of the Schrödinger equation beyond 4, an effective centrifugal barrier is created which is sufficient to cause binding when E=0 and ν>2, even for l=0. We discuss the physics of the above solutions and compare them to the corresponding classical solutions, which are derived elsewhere.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
