Downloads provided by UsageCounts
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>handle: 11380/1174938
Abstract In big data sources, real-world entities are typically represented with a variety of schemata and formats (e.g., relational records, JSON objects, etc.). Different profiles (i.e., representations) of an entity often contain redundant and/or inconsistent information. Thus identifying which profiles refer to the same entity is a fundamental task (called Entity Resolution) to unleash the value of big data. The naive all-pairs comparison solution is impractical on large data, hence blocking methods are employed to partition a profile collection into (possibly overlapping) blocks and limit the comparisons to profiles that appear in the same block together. Meta-blocking is the task of restructuring a block collection, removing superfluous comparisons. Existing meta-blocking approaches rely exclusively on schema-agnostic features, under the assumption that handling the schema variety of big data does not pay-off for such a task. In this paper, we demonstrate how “loose” schema information (i.e., statistics collected directly from the data) can be exploited to enhance the quality of the blocks in a holistic loosely schema-aware (meta-)blocking approach that can be used to speed up your favorite Entity Resolution algorithm. We call it Blast (Blocking with Loosely-Aware Schema Techniques). We show how Blast can automatically extract the loose schema information by adopting an LSH-based step for efficiently handling volume and schema heterogeneity of the data. Furthermore, we introduce a novel meta-blocking algorithm that can be employed to efficiently execute Blast on MapReduce-like systems (such as Apache Spark). Finally, we experimentally demonstrate, on real-world datasets, how Blast outperforms the state-of-the-art (meta-)blocking approaches.
Apache Spark; Big data integration; Data cleaning; Entity resolution; Meta-blocking;
Apache Spark; Big data integration; Data cleaning; Entity resolution; Meta-blocking;
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 104 | |
| downloads | 50 |

Views provided by UsageCounts
Downloads provided by UsageCounts