Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Anesthesiologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Anesthesiology
Article
Data sources: UnpayWall
Anesthesiology
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sphingosine-1-phosphate Receptor 2 Signaling Promotes Caspase-11–dependent Macrophage Pyroptosis and Worsens Escherichia coli Sepsis Outcome

Authors: Fang, Song; Jinchao, Hou; Zhecong, Chen; Baoli, Cheng; Ruyi, Lei; Ping, Cui; Yaqi, Sun; +2 Authors

Sphingosine-1-phosphate Receptor 2 Signaling Promotes Caspase-11–dependent Macrophage Pyroptosis and Worsens Escherichia coli Sepsis Outcome

Abstract

Abstract What We Already Know about This Topic What This Article Tells Us That Is New Background Pyroptosis, a type of proinflammatory programmed cell death, drives cytokine storm. Caspase-11–dependent macrophage pyroptosis contributes to mortality during sepsis. Sphingosine-1-phosphate receptor 2 (S1PR2) signaling can amplify interleukin-1β secretion in endotoxin-induced inflammation. Here, we hypothesized that S1PR2 signaling increases caspase-11–dependent macrophage pyroptosis and worsens Gram-negative sepsis outcome. Methods A Gram-negative sepsis model was induced through intraperitoneal injection of Escherichia coli. Primary peritoneal macrophages isolated from wild-type, S1pr2-deficient (S1pr2 -/-), or nucleotide-binding oligomerization domain-like receptor protein-3–deficient mice were treated with E. coli. Caspase-11 activation, macrophage pyroptosis, and Ras homolog gene family, member A-guanosine triphosphate levels were assessed in those cells. Additionally, monocyte caspase-4 (an analog of caspase-11) expression and its correlation with S1PR2 expression were determined in patients with Gram-negative sepsis (n = 11). Results Genetic deficiency of S1PR2 significantly improved survival rate (2/10 [20%] in wild-type vs. 7/10 [70%] in S1pr2 -/-, P = 0.004) and decreased peritoneal macrophage pyroptosis (pyroptosis rate: 35 ± 3% in wild-type vs. 10 ± 3% in S1pr2 -/-, P < 0.001). Decreased caspase-11 activation in S1PR2 deficiency cells contributed to the reduced macrophage pyroptosis. In addition, RhoA inhibitor abrogated the amplified caspase-11 activation in wild-type or S1PR2-overexpressing cells. In patients with Gram-negative sepsis, caspase-4 increased significantly in monocytes compared to nonseptic controls and was positively correlated with S1PR2 (r = 0.636, P = 0.035). Conclusions S1PR2 deficiency decreased macrophage pyroptosis and improved survival in E. coli sepsis. These beneficial effects were attributed to the decreased caspase-11 activation of S1PR2-deficient macrophages. S1PR2 and caspase-11 may be promising new targets for treatment of sepsis.

Related Organizations
Keywords

Male, Mice, Knockout, Macrophages, Bacteremia, Caspases, Initiator, Mice, Inbred C57BL, Mice, Receptors, Lysosphingolipid, Caspases, Sepsis, Escherichia coli, Pyroptosis, Animals, Humans, Sphingosine-1-Phosphate Receptors, Cells, Cultured, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
bronze