Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulation Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2000
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Circulation Research
Article . 2000 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multiple Transcriptional Domains, With Distinct Left and Right Components, in the Atrial Chambers of the Developing Heart

Authors: Franco D; Campione M; Kelly R; Zammit PS; Buckingham M; Lamers WH; Moorman AF;

Multiple Transcriptional Domains, With Distinct Left and Right Components, in the Atrial Chambers of the Developing Heart

Abstract

Abstract —During heart development, 2 fast-conducting regions of working myocardium balloon out from the slow-conducting primary myocardium of the tubular heart. Three regions of primary myocardium persist: the outflow tract, atrioventricular canal, and inflow tract, which are contiguous throughout the inner curvature of the heart. The contribution of the inflow tract to the definitive atrial chambers has remained enigmatic largely because of the lack of molecular markers that permit unambiguous identification of this myocardial domain. We now report that the genes encoding atrial natriuretic factor, myosin light chain (MLC) 3F, MLC2V, and Pitx-2 , and transgenic mouse lines expressing nlacZ under the control of regulatory sequences of the mouse MLC1F/3F gene, display regionalized patterns of expression in the atrial component of the developing mouse heart. These data distinguish 4 broad transcriptional domains in the atrial myocardium: (1) the atrioventricular canal that will form the smooth-walled lower atrial rim proximal to the ventricles; (2) the atrial appendages; (3) the caval vein myocardium (systemic inlet); and (4) the mediastinal myocardium (pulmonary inlet), including the atrial septa. The pattern of expression of Pitx-2 reveals that each of these transcriptional domains has a distinct left and right component. This study reveals for the first time differential gene expression in the systemic and pulmonary inlets, which is not shared by the contiguous atrial appendages and provides evidence for multiple molecular compartments within the atrial chambers. Furthermore, this work will allow the contribution of each of these myocardial components to be studied in congenitally malformed hearts, such as those with abnormal venous return.

Keywords

Homeodomain Proteins, Aging, Myosin Light Chains, Myocardium, Gene Expression Regulation, Developmental, Nuclear Proteins, Mice, Transgenic, Antigens, Differentiation, Rats, Mice, Inbred C57BL, Mice, Lac Operon, Genes, Reporter, Organ Specificity, Animals, Paired Box Transcription Factors, Heart Atria, Rats, Wistar, Atrial Natriuretic Factor, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    91
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
91
Top 10%
Top 10%
Top 10%
bronze