Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biophysical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article . 2014
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biophysical Journal
Article . 2014 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Gain-Of-Function Mutation in Cardiac Myosin Binding Protein-C Increases Viscoelastic Load and Slows Shortening Velocity in Myocytes from Transgenic Mice

Authors: Kristina L. Bezold; Samantha P. Harris; Jaskiran K. Khosa;

A Gain-Of-Function Mutation in Cardiac Myosin Binding Protein-C Increases Viscoelastic Load and Slows Shortening Velocity in Myocytes from Transgenic Mice

Abstract

Cardiac myosin binding protein C (cMyBP-C) is a sarcomeric protein involved in the regulation of cardiac muscle contraction. Effects of cMyBP-C on contraction are thought to be mediated in part by limiting the interactions of actin and myosin to slow myocyte shortening velocity and power output. Although interactions with myosin S2 on the thick filament have been proposed as a way in which cMyBP-C could limit shortening velocity (e.g., by creating a drag force on myosin heads), interactions of cMyBP-C with actin could also account for slowed shortening velocity. For instance, cMyBP-C could create a drag that opposes filament sliding by transiently linking thick and thin filaments together. To explore this possibility we created transgenic mice that express a mutant cMyBP-C with a point mutation, L348P (human L352P), located in a conserved sequence within the regulatory M-domain that increases cMyBP-C binding to actin in vitro. We reasoned that if the mutation also enhanced binding to actin in sarcomeres then shortening velocity would be slowed in myocytes from L348P mice. Results show that transgenic mice expressing the L348P mutation are viable and that L348P cMyBP-C is expressed in sarcomeres. Permeabilized myocytes from transgenic mice showed altered force production including reduced maximal force and enhanced calcium sensitivity of tension. Shortening velocity and power output were significantly reduced whereas passive stiffness and myocyte visco-elasticity were significantly increased. Together these data are consistent with the idea that cMyBP-C creates an internal load in the sarcomere by binding to actin.

Related Organizations
Keywords

Biophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
hybrid