Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Радиофизика и электр...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Радиофизика и электроника
Article . 2017 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influence of axial guiding magnetic field on amplification of waves in a plasma-beam superheterodyne free electron laser of dopplertrone type

Влияние продольного магнитного поля на усиление волн в плазменно-пучковом супергетеродинном лазере на свободных электронах доплертронного типа
Authors: A. V. Lysenko; G. A. Oleksiienko; A. V. Pavlov;

Influence of axial guiding magnetic field on amplification of waves in a plasma-beam superheterodyne free electron laser of dopplertrone type

Abstract

The research subject is the amplification characteristics of the plasma-beam superheterodyne free-electron laser of the dopplertron type. The purpose is to theoretically investigate the influence of longitudinal magnetic field on the wave amplification in such a device in order to find the optimal operation mode. As initial we use the quasihydrodynamic equation, the continuity equation and Maxwell’s equations. The motion problem is solved by means of the modernized method of averaged characteristics. The problem of electromagnetic self-fields excitation is solved through the slowly varying amplitudes method. We have analyzed the influence of the axial guiding magnetic field on the waves dynamics in a plasma-beam superheterodyne free electron laser with Dopplertron pump in the framework of the cubic nonlinear approximation. We found out that the intensity of electromagnetic radiation increases, when the intensity of the axial guiding magnetic field decreases right up to a critical value. We found the critical value of magnetic field strength, and the saturation levels of electromagnetic waves. We have demonstrated that the investigated free electron laser can be used as a powerful amplifier of electromagnetic radiation in the millimeter wavelength range.

Keywords

axial guiding magnetic field, TK7800-8360, superheterodyne free electron laser, parametric resonance, Electronics, beam-plasma instability

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold