
pmid: 16782326
Studies of chemotaxis in the social amoeba Dictyostelium discoideum have revealed numerous conserved signaling networks that are activated by chemoattractants. In the presence of a uniformly distributed stimulus, these pathways are transiently activated, but in a gradient they are activated persistently and can be localized to either the front or the back of the cell. Recent studies have begun to elucidate how chemoattractant signaling regulates the three main components of chemotaxis: directional sensing, pseudopod extension, and polarization.
Chemotaxis, Animals, Cell Polarity, Dictyostelium, Pseudopodia, Signal Transduction
Chemotaxis, Animals, Cell Polarity, Dictyostelium, Pseudopodia, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 67 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
