Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1109/focs.2...
Article . 2017 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2017
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Polylogarithmic Approximation for Minimum Planarization (Almost)

Authors: Kawarabayashi, Ken-ichi; Sidiropoulos, Anastasios;

Polylogarithmic Approximation for Minimum Planarization (Almost)

Abstract

In the minimum planarization problem, given some $n$-vertex graph, the goal is to find a set of vertices of minimum cardinality whose removal leaves a planar graph. This is a fundamental problem in topological graph theory. We present a $\log^{O(1)} n$-approximation algorithm for this problem on general graphs with running time $n^{O(\log n/\log\log n)}$. We also obtain a $O(n^\varepsilon)$-approximation with running time $n^{O(1/\varepsilon)}$ for any arbitrarily small constant $\varepsilon > 0$. Prior to our work, no non-trivial algorithm was known for this problem on general graphs, and the best known result even on graphs of bounded degree was a $n^{��(1)}$-approximation [Chekuri and Sidiropoulos 2013]. As an immediate corollary, we also obtain improved approximation algorithms for the crossing number problem on graphs of bounded degree. Specifically, we obtain $O(n^{1/2+\varepsilon})$-approximation and $n^{1/2} \log^{O(1)} n$-approximation algorithms in time $n^{O(1/\varepsilon)}$ and $n^{O(\log n/\log\log n)}$ respectively. The previously best-known result was a polynomial-time $n^{9/10}\log^{O(1)} n$-approximation algorithm [Chuzhoy 2011]. Our algorithm introduces several new tools including an efficient grid-minor construction for apex graphs, and a new method for computing irrelevant vertices. Analogues of these tools were previously available only for exact algorithms. Our work gives efficient implementations of these ideas in the setting of approximation algorithms, which could be of independent interest.

Keywords

FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Green