Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.aclweb.o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.aclweb.org/antholo...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.18653/v1/20...
Article . 2020 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2020
License: CC BY SA
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Noisy Text Data: Achilles’ Heel of BERT

Authors: Ankit Kumar; Piyush Makhija; Anuj Gupta;

Noisy Text Data: Achilles’ Heel of BERT

Abstract

Owing to the phenomenal success of BERT on various NLP tasks and benchmark datasets, industry practitioners are actively experimenting with fine-tuning BERT to build NLP applications for solving industry use cases. For most datasets that are used by practitioners to build industrial NLP applications, it is hard to guarantee absence of any noise in the data. While BERT has performed exceedingly well for transferring the learnings from one use case to another, it remains unclear how BERT performs when fine-tuned on noisy text. In this work, we explore the sensitivity of BERT to noise in the data. We work with most commonly occurring noise (spelling mistakes, typos) and show that this results in significant degradation in the performance of BERT. We present experimental results to show that BERT's performance on fundamental NLP tasks like sentiment analysis and textual similarity drops significantly in the presence of (simulated) noise on benchmark datasets viz. IMDB Movie Review, STS-B, SST-2. Further, we identify shortcomings in the existing BERT pipeline that are responsible for this drop in performance. Our findings suggest that practitioners need to be vary of presence of noise in their datasets while fine-tuning BERT to solve industry use cases.

7 pages, 2 tables, 1 plot

Keywords

FOS: Computer and information sciences, Computer Science - Computation and Language, Computation and Language (cs.CL)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
Green
hybrid