Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Roboticaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Robotica
Article . 2019 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Navigational Control Analysis of Two-Wheeled Self-Balancing Robot in an Unknown Terrain Using Back-Propagation Neural Network Integrated Modified DAYANI Approach

Authors: Animesh Chhotray; Dayal R. Parhi;

Navigational Control Analysis of Two-Wheeled Self-Balancing Robot in an Unknown Terrain Using Back-Propagation Neural Network Integrated Modified DAYANI Approach

Abstract

SummaryThe present paper discusses on development and implementation of back-propagation neural network integrated modified DAYANI method for path control of a two-wheeled self-balancing robot in an obstacle cluttered environment. A five-layered back-propagation neural network has been instigated to find out the intensity of various weight factors considering seven navigational parameters as obtained from the modified DAYANI method. The intensity of weight factors is found out using the neural technique with input parameters such as number of visible intersecting obstacles along the goal direction, minimum visible front obstacle distances as obtained from the sensors, minimum left side obstacle distance within the visible left side range of the robot, average of left side obstacle distances, minimum right side obstacle distance within the visible right side range of the robot, average of right side obstacle distances and goal distance from the robot’s probable next position. Comparison between simulation and experimental exercises is carried out for verifying the robustness of the proposed controller. Also, the authenticity of the proposed controller is verified through a comparative analysis between the results obtained by other existing techniques with the current technique in an exactly similar test scenario and an enhancement of the results is witnessed.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!