
pmid: 32386181
In recent years, dynamic multiobjective optimization problems (DMOPs) have drawn increasing interest. Many dynamic multiobjective evolutionary algorithms (DMOEAs) have been put forward to solve DMOPs mainly by incorporating diversity introduction or prediction approaches with conventional multiobjective evolutionary algorithms. Maintaining a good balance of population diversity and convergence is critical to the performance of DMOEAs. To address the above issue, a DMOEA based on decision variable classification (DMOEA-DVC) is proposed in this article. DMOEA-DVC divides the decision variables into two and three different groups in static optimization and changes response stages, respectively. In static optimization, two different crossover operators are used for the two decision variable groups to accelerate the convergence while maintaining good diversity. In change response, DMOEA-DVC reinitializes the three decision variable groups by maintenance, prediction, and diversity introduction strategies, respectively. DMOEA-DVC is compared with the other six state-of-the-art DMOEAs on 33 benchmark DMOPs. The experimental results demonstrate that the overall performance of the DMOEA-DVC is superior or comparable to that of the compared algorithms.
Algorithms
Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 46 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
