Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ERAD inhibitors integrate ER stress with an epigenetic mechanism to activate BH3-only protein NOXA in cancer cells

Authors: Helena Mora-Jensen; Patricia Pérez-Galán; Weiping Chen; Chris C. Wolford; Marc A. Weniger; Qiuyan Wang; Adrian Wiestner; +4 Authors

ERAD inhibitors integrate ER stress with an epigenetic mechanism to activate BH3-only protein NOXA in cancer cells

Abstract

The ubiquitin-proteasome system has recently emerged as a major target for drug development in cancer therapy. The proteasome inhibitor bortezomib has clinical activity in multiple myeloma and mantle cell lymphoma. Here we report that Eeyarestatin I (EerI), a chemical inhibitor that blocks endoplasmic reticulum (ER)-associated protein degradation, has antitumor and biologic activities similar to bortezomib and can synergize with bortezomib. Like bortezomib, EerI-induced cytotoxicity requires the up-regulation of the Bcl-2 homology3 (BH3)-only pro-apoptotic protein NOXA. We further demonstrate that both EerI and bortezomib activate NOXA via an unanticipated mechanism that requires cooperation between two processes. First, these agents elicit an integrated stress response program at the ER to activate the CREB/ATF transcription factors ATF3 and ATF4. We show that ATF3 and ATF4 form a complex capable of binding to the NOXA promoter, which is required for NOXA activation. Second, EerI and bortezomib also block ubiquitination of histone H2A to relieve its inhibition on NOXA transcription. Our results identify a class of anticancer agents that integrate ER stress response with an epigenetic mechanism to induce cell death.

Keywords

Proteasome Endopeptidase Complex, Transcription, Genetic, Ubiquitin, Hydrazones, Antineoplastic Agents, Endoplasmic Reticulum, Boronic Acids, Cell Line, Epigenesis, Genetic, Bortezomib, Gene Expression Regulation, Neoplastic, Adaptor Proteins, Vesicular Transport, Cell Line, Tumor, Neoplasms, Pyrazines, Humans, Hydroxyurea, Adaptor Proteins, Signal Transducing, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    312
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
312
Top 1%
Top 1%
Top 1%
bronze
Related to Research communities
Cancer Research