
(1) The aim of the study was to investigate the spatial and temporal characteristics of the airflow created by two commercially available non-contact tonometers: the CorvisST and the Ocular Response Analyser (ORA). (2) The airflow pressure was measured using a microelectromechanical system (MEMS) pressure sensor to investigate the spatial and temporal distribution. The airflow from the CorvisST and Ocular Response Analyser were mapped to a 600 µm and a 1 mm resolution grid, respectively. (3) Central airflow pressure of the CorvisST (96.4 ± 1.4 mmHg) was higher than that of the Ocular Response Analyser (91.7 ± 0.7 mmHg). The duration of the air-puffs also differed, with the CorvisST showing a shorter duration (21.483 ± 0.2881 ms) than that of the ORA (23.061 ± 0.1872 ms). The rising edge of the CorvisST airflow pressure profile demonstrated a lower gradient (+8.94 mmHg/ms) compared to that of the Ocular Response Analyser (+11.00 mmHg/ms). Both had similar decay response edges: CorvisST −11.18 mmHg/ms, Ocular Response Analyser −11.65 mmHg/ms. (4) The study presents a valid method to investigate the physical dimensions of the airflow pressure of non-contact tonometers. Novel findings relating to the magnitude, duration and spatial characteristics of the respective airflow pressures are reported. It is anticipated that this information will better inform clinical studies and theoretical models relating to ocular biomechanics.
Technology, QH301-705.5, T, Physics, QC1-999, CorvisST, Engineering (General). Civil engineering (General), ORA, Chemistry, airflow pressure of NCT, air puff, physical dimension of jet stream, biochemistry, temporal and spatial distribution of the air puff, TA1-2040, Biology (General), QD1-999
Technology, QH301-705.5, T, Physics, QC1-999, CorvisST, Engineering (General). Civil engineering (General), ORA, Chemistry, airflow pressure of NCT, air puff, physical dimension of jet stream, biochemistry, temporal and spatial distribution of the air puff, TA1-2040, Biology (General), QD1-999
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
